Activated microglia provide a neuroprotective role by balancing glial cell-line derived neurotrophic factor and tumor necrosis factor-α secretion after subacute cerebral ischemia

نویسندگان

  • JIANPING WANG
  • ZHITANG YANG
  • CONG LIU
  • YUANZHENG ZHAO
  • YIBING CHEN
چکیده

Microglia are the major immune cells in the central nervous system and play a key role in brain injury pathology. However, the role of activated microglia after subacute cerebral ischemia (SCI) remains unknown. To address this issue, we established a permanent middle cerebral artery occlusion (pMCAO) rat model and treated pMCAO rats with N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide (PJ34) (an inhibitor of microglial activation), or with vehicle alone. Finally, we determined the differences between the PJ34-and vehicle-treated rats with respect to neurological deficits, infarct volume, neuronal loss and the expression of CD11b (a marker of microglial activation), glial cell line-derived neurotrophic factor (GDNF) and tumor necrosis factor-α (TNF-α) at 1, 3 and 7 days after treatment. We found that the PJ34-treated rats had more severe neurological deficits and a larger infarct volume and exhibited a decreased CD11b expression, more neuronal loss, decreased expression of GDNF mRNA and protein but increased expression of TNF-α mRNA and protein compared with the vehicle-treated rats at 3 and 7 days after treatment. These results indicate that activated microglia provide a neuroprotective role through balancing GDNF and TNF-α expression following SCI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells

Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...

متن کامل

Activated Microglia Induce Bone Marrow Mesenchymal Stem Cells to Produce Glial Cell-Derived Neurotrophic Factor and Protect Neurons Against Oxygen-Glucose Deprivation Injury

In this study, we investigated interactions among microglia (MG), bone marrow mesenchymal stem cells (BMSCs) and neurons in cerebral ischemia and the potential mechanisms using an in vitro oxygen-glucose deprivation (OGD) model. Rat BMSCs were incubated with conditioned medium (CM) from in vitro cultures of OGD-activated rat MG and murine BV2 MG cells. Effects of glial cell-derived neurotrophic...

متن کامل

Neuroprotective effect of total flavonoids from Ilex pubescens against focal cerebral ischemia/reperfusion injury in rats

Ilex pubescens is commonly used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases, such as coronary artery disease and stroke. However, the underlying mechanisms remain to be fully elucidated. The aim of the present study was to investigate the effects of Ilex pubescens total flavonoids (IPTF) on neuroprotection and the potential mechanisms in a rat model of f...

متن کامل

Fingolimod phosphate promotes the neuroprotective effects of microglia.

Fingolimod phosphate (FTY720) is a sphingosine 1-phosphate (S1P) receptor agonist that is being used as a new oral drug for multiple sclerosis. FTY720 prevents lymphocytes from moving out of the lymphoid organs and inhibits autoreactive lymphocytes from infiltrating the central nervous system. Whether FTY720 directly affects microglia-the innate immune cells of the central nervous system-is unc...

متن کامل

Honokiol inhibits the inflammatory reaction during cerebral ischemia reperfusion by suppressing NF-κB activation and cytokine production of glial cells.

This study was designed to investigate the effects of honokiol, a neuroprotective agent, on cerebral edema in cerebral ischemia reperfusion (IR) mice and its mechanism of anti-inflammation. Honokiol (0.7-70μg/kg) significantly reduced brain water contents and decreased the exudation of Evans blue dye from brain capillaries in cerebral IR mice. Honokiol (0.1-10μM) significantly reduced the p65 s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2013